192 lines
4.0 KiB
C++
192 lines
4.0 KiB
C++
/* Problem URL: https://codeforces.com/contest/609/problem/E */
|
|
|
|
#include <bits/stdc++.h>
|
|
#include <ext/pb_ds/assoc_container.hpp>
|
|
#include <ext/pb_ds/tree_policy.hpp>
|
|
|
|
using namespace std;
|
|
using namespace __gnu_pbds;
|
|
|
|
template <class T, class comp = less<>>
|
|
using ordered_set = tree<T, null_type , comp , rb_tree_tag , tree_order_statistics_node_update>;
|
|
|
|
#define V vector
|
|
|
|
#define rmin(a, b) a = min(a, b)
|
|
#define rmax(a, b) a = max(a, b)
|
|
|
|
#define rep(i, lim) for (int i = 0; i < (lim); i++)
|
|
#define nrep(i, s, lim) for (int i = s; i < (lim); i++)
|
|
|
|
#define repv(i, v) for (auto &i : (v))
|
|
#define fillv(v) for (auto &itr_ : (v)) { cin >> itr_; }
|
|
#define sortv(v) sort(v.begin(), v.end())
|
|
#define all(v) (v).begin(), (v).end()
|
|
|
|
using vi = vector<int>;
|
|
using vvi = vector<vi>;
|
|
using vvvi = vector<vvi>;
|
|
using vvvvi = vector<vvvi>;
|
|
|
|
using ll = long long;
|
|
|
|
using vl = vector<ll>;
|
|
using vvl = vector<vl>;
|
|
using vvvl = vector<vvl>;
|
|
using vvvvl = vector<vvvl>;
|
|
|
|
template<class v>
|
|
auto operator<<(ostream &os, const vector<v> &vec)->ostream& {
|
|
os << vec[0];
|
|
for (size_t i = 1; i < vec.size(); i++) {
|
|
os << ' ' << vec[i];
|
|
}
|
|
os << '\n';
|
|
return os;
|
|
}
|
|
|
|
template<class v>
|
|
auto operator>>(istream &is, vector<v> &vec)->istream& {
|
|
for (auto &i : vec) {
|
|
is >> i;
|
|
}
|
|
return is;
|
|
}
|
|
|
|
template<class v>
|
|
auto operator<<(ostream &os, const vector<vector<v>> &vec)->ostream& {
|
|
for (auto &i : vec) {
|
|
os << i[0];
|
|
for (size_t j = 1; j < i.size(); j++) {
|
|
os << ' ' << i[j];
|
|
}
|
|
os << '\n';
|
|
}
|
|
return os;
|
|
}
|
|
|
|
template<class v>
|
|
auto operator>>(istream &is, vector<vector<v>> &vec)->istream& {
|
|
for (auto &i : vec) {
|
|
for (auto &j : i) {
|
|
is >> j;
|
|
}
|
|
}
|
|
return is;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
ios::sync_with_stdio(false);
|
|
cin.tie(nullptr);
|
|
|
|
int n, m;
|
|
cin >> n >> m;
|
|
|
|
V<tuple<ll, int, int, int>> edges(m);
|
|
rep(i, m) {
|
|
auto &[c, u, v, j] = edges[i];
|
|
cin >> u >> v >> c;
|
|
u--, v--;
|
|
j = i;
|
|
}
|
|
|
|
sortv(edges);
|
|
|
|
vi dsu(n);
|
|
rep(i, n) {
|
|
dsu[i] = i;
|
|
}
|
|
|
|
function<int(int)> find_p = [&](int i) {
|
|
if (dsu[i] == i) {
|
|
return i;
|
|
}
|
|
return dsu[i] = find_p(dsu[i]);
|
|
};
|
|
|
|
auto join = [&](int a, int b) {
|
|
a = find_p(a);
|
|
b = find_p(b);
|
|
dsu[b] = a;
|
|
return a != b;
|
|
};
|
|
|
|
ll ans = 0;
|
|
V<V<pair<int, ll>>> graph(n);
|
|
|
|
for (auto [c, u, v, j] : edges) {
|
|
if (join(u, v)) {
|
|
ans += c;
|
|
graph[u].emplace_back(v, c);
|
|
graph[v].emplace_back(u, c);
|
|
}
|
|
}
|
|
|
|
vvi parent(20, vi(n));
|
|
vvl maximal(20, vl(n));
|
|
vi depth(n);
|
|
|
|
function<void(int, int, ll)> dfs = [&](int i, int p, ll c) {
|
|
parent[0][i] = p;
|
|
maximal[0][i] = c;
|
|
depth[i] = depth[p] + 1;
|
|
|
|
nrep(j, 1, 20) {
|
|
parent[j][i] = parent[j - 1][parent[j - 1][i]];
|
|
maximal[j][i] = max(maximal[j - 1][i], maximal[j - 1][parent[j - 1][i]]);
|
|
}
|
|
|
|
for (auto [j, c] : graph[i]) {
|
|
if (j == p) {
|
|
continue;
|
|
}
|
|
|
|
dfs(j, i, c);
|
|
}
|
|
};
|
|
|
|
dfs(0, 0, 0);
|
|
|
|
auto lca = [&](int a, int b) {
|
|
if (depth[a] > depth[b]) {
|
|
swap(a, b);
|
|
}
|
|
|
|
ll ans = 0;
|
|
int diff = depth[b] - depth[a];
|
|
|
|
rep(i, 20) {
|
|
if ((diff >> i) & 1) {
|
|
rmax(ans, maximal[i][b]);
|
|
b = parent[i][b];
|
|
}
|
|
}
|
|
|
|
if (a == b) {
|
|
return ans;
|
|
}
|
|
|
|
for (int i = 19; i >= 0; i--) {
|
|
if (parent[i][a] != parent[i][b]) {
|
|
rmax(ans, maximal[i][a]);
|
|
rmax(ans, maximal[i][b]);
|
|
a = parent[i][a];
|
|
b = parent[i][b];
|
|
}
|
|
}
|
|
|
|
return max({ans, maximal[0][a], maximal[0][b]});
|
|
};
|
|
|
|
vl act(m);
|
|
|
|
for (auto [c, u, v, i] : edges) {
|
|
act[i] = ans - lca(u, v) + c;
|
|
}
|
|
|
|
repv(i, act) {
|
|
cout << i << '\n';
|
|
}
|
|
}
|