Codeforces-solutions/Educational Codeforces Round 3/E. Minimum spanning tree for each edge.cpp

192 lines
4.0 KiB
C++

/* Problem URL: https://codeforces.com/contest/609/problem/E */
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template <class T, class comp = less<>>
using ordered_set = tree<T, null_type , comp , rb_tree_tag , tree_order_statistics_node_update>;
#define V vector
#define rmin(a, b) a = min(a, b)
#define rmax(a, b) a = max(a, b)
#define rep(i, lim) for (int i = 0; i < (lim); i++)
#define nrep(i, s, lim) for (int i = s; i < (lim); i++)
#define repv(i, v) for (auto &i : (v))
#define fillv(v) for (auto &itr_ : (v)) { cin >> itr_; }
#define sortv(v) sort(v.begin(), v.end())
#define all(v) (v).begin(), (v).end()
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vvvvi = vector<vvvi>;
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vvvvl = vector<vvvl>;
template<class v>
auto operator<<(ostream &os, const vector<v> &vec)->ostream& {
os << vec[0];
for (size_t i = 1; i < vec.size(); i++) {
os << ' ' << vec[i];
}
os << '\n';
return os;
}
template<class v>
auto operator>>(istream &is, vector<v> &vec)->istream& {
for (auto &i : vec) {
is >> i;
}
return is;
}
template<class v>
auto operator<<(ostream &os, const vector<vector<v>> &vec)->ostream& {
for (auto &i : vec) {
os << i[0];
for (size_t j = 1; j < i.size(); j++) {
os << ' ' << i[j];
}
os << '\n';
}
return os;
}
template<class v>
auto operator>>(istream &is, vector<vector<v>> &vec)->istream& {
for (auto &i : vec) {
for (auto &j : i) {
is >> j;
}
}
return is;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
V<tuple<ll, int, int, int>> edges(m);
rep(i, m) {
auto &[c, u, v, j] = edges[i];
cin >> u >> v >> c;
u--, v--;
j = i;
}
sortv(edges);
vi dsu(n);
rep(i, n) {
dsu[i] = i;
}
function<int(int)> find_p = [&](int i) {
if (dsu[i] == i) {
return i;
}
return dsu[i] = find_p(dsu[i]);
};
auto join = [&](int a, int b) {
a = find_p(a);
b = find_p(b);
dsu[b] = a;
return a != b;
};
ll ans = 0;
V<V<pair<int, ll>>> graph(n);
for (auto [c, u, v, j] : edges) {
if (join(u, v)) {
ans += c;
graph[u].emplace_back(v, c);
graph[v].emplace_back(u, c);
}
}
vvi parent(20, vi(n));
vvl maximal(20, vl(n));
vi depth(n);
function<void(int, int, ll)> dfs = [&](int i, int p, ll c) {
parent[0][i] = p;
maximal[0][i] = c;
depth[i] = depth[p] + 1;
nrep(j, 1, 20) {
parent[j][i] = parent[j - 1][parent[j - 1][i]];
maximal[j][i] = max(maximal[j - 1][i], maximal[j - 1][parent[j - 1][i]]);
}
for (auto [j, c] : graph[i]) {
if (j == p) {
continue;
}
dfs(j, i, c);
}
};
dfs(0, 0, 0);
auto lca = [&](int a, int b) {
if (depth[a] > depth[b]) {
swap(a, b);
}
ll ans = 0;
int diff = depth[b] - depth[a];
rep(i, 20) {
if ((diff >> i) & 1) {
rmax(ans, maximal[i][b]);
b = parent[i][b];
}
}
if (a == b) {
return ans;
}
for (int i = 19; i >= 0; i--) {
if (parent[i][a] != parent[i][b]) {
rmax(ans, maximal[i][a]);
rmax(ans, maximal[i][b]);
a = parent[i][a];
b = parent[i][b];
}
}
return max({ans, maximal[0][a], maximal[0][b]});
};
vl act(m);
for (auto [c, u, v, i] : edges) {
act[i] = ans - lca(u, v) + c;
}
repv(i, act) {
cout << i << '\n';
}
}