CSES-solutions/CSES Problem Set/Teleporters Path.cpp
Segcolt 8b03716512 Add a lot more of my solutions.
I don't remember which ones doesn't pass though
2025-09-12 14:51:10 -03:00

150 lines
2.8 KiB
C++

/* Problem URL: https://cses.fi/problemset/task/1693 */
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template <class T, class comp = less<>>
using ordered_set = tree<T, null_type , comp , rb_tree_tag , tree_order_statistics_node_update>;
#define V vector
#define rmin(a, b) a = min(a, b)
#define rmax(a, b) a = max(a, b)
#define rep(i, lim) for (int i = 0; i < (lim); i++)
#define nrep(i, s, lim) for (int i = s; i < (lim); i++)
#define repv(i, v) for (auto &i : (v))
#define fillv(v) for (auto &itr_ : (v)) { cin >> itr_; }
#define sortv(v) sort(v.begin(), v.end())
#define all(v) (v).begin(), (v).end()
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vvvvi = vector<vvvi>;
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vvvvl = vector<vvvl>;
template<class v>
auto operator<<(ostream &os, const vector<v> &vec)->ostream& {
os << vec[0];
for (size_t i = 1; i < vec.size(); i++) {
os << ' ' << vec[i];
}
os << '\n';
return os;
}
template<class v>
auto operator>>(istream &is, vector<v> &vec)->istream& {
for (auto &i : vec) {
is >> i;
}
return is;
}
template<class v>
auto operator<<(ostream &os, const vector<vector<v>> &vec)->ostream& {
for (auto &i : vec) {
os << i[0];
for (size_t j = 1; j < i.size(); j++) {
os << ' ' << i[j];
}
os << '\n';
}
return os;
}
template<class v>
auto operator>>(istream &is, vector<vector<v>> &vec)->istream& {
for (auto &i : vec) {
for (auto &j : i) {
is >> j;
}
}
return is;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vi out(n);
vi in(n);
vvi graph(n);
while (m--) {
int a, b;
cin >> a >> b;
a--, b--;
out[a]++;
in[b]++;
graph[a].push_back(b);
}
auto check = [&]() {
if (out[0] != in[0] + 1 || out[n - 1] + 1 != in[n - 1]) {
return false;
};
nrep(i, 1, n - 1) {
if (out[i] != in[i]) {
return false;
}
}
return true;
};
if (!check()) {
cout << "IMPOSSIBLE\n";
return 0;
}
stack<int> s;
s.push(0);
vi path;
while (!s.empty()) {
int i = s.top();
if (graph[i].empty()) {
path.push_back(i + 1);
s.pop();
continue;
}
s.push(graph[i].back());
graph[i].pop_back();
}
rep(i, n) {
if (!graph[i].empty()) {
cout << "IMPOSSIBLE\n";
return 0;
}
}
reverse(all(path));
cout << path;
}